If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16m^2+112m+144=0
a = -16; b = 112; c = +144;
Δ = b2-4ac
Δ = 1122-4·(-16)·144
Δ = 21760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{21760}=\sqrt{256*85}=\sqrt{256}*\sqrt{85}=16\sqrt{85}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(112)-16\sqrt{85}}{2*-16}=\frac{-112-16\sqrt{85}}{-32} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(112)+16\sqrt{85}}{2*-16}=\frac{-112+16\sqrt{85}}{-32} $
| 8s+3(12+7s)=49 | | 82=5u+12 | | 3+2x+x=2x+7 | | 11x+12=8x(-9) | | 4x+38+3x+9=180 | | 60/v=4 | | 4-3x=4x+16 | | -(-4-10v)-3=-31+6v | | 2t/3-1=t+1/2 | | x/6+5=17 | | 4x+3=23. | | 7x+32=5x-20 | | 4x+1=(-1+3)2 | | 7x+3=17-13x | | 7(4x+6)=266 | | -3f=6 | | 7x+3=17-13× | | 10-7x;x=-10 | | 11+9x=-3x-37 | | 5x^2-7x+5-(-7x^2-9x+12)=0 | | 2x(x+3)-4=14 | | −7x+7x^2=9 | | 12x-2+4x+10=120 | | 3x-24-7=2x+24+2x | | 12+2x+30=x+30 | | a+3a-1=a/4-3 | | D+4(d+6)=–1 | | -2-4x=6 | | 2x+42=x+30 | | 10x^2-3=327 | | 11(5+5x)=55-x | | 9=−7x+7x2 |